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Abstract

Successfully deploying assistive robots in household en-

vironments necessitates the rapid adaptation of the robot’s

capabilities to functionally interact with newly encountered

objects. Existing known-object pose estimation methods

encounter scalability challenges due to changing environ-

ments, lengthy training times, and reliance on CAD models,

hindering quick adaptation to novel objects. On the other

hand, approaches working on unknown objects are limited

to instance-agnostic manipulations, such as grasping, and

lack the ability to perform functional manipulation. In this

work, we present the initial results of a general few-shot

pose estimation-based approach that seamlessly integrates

learning by demonstration with RGB-D templates captured

during a scanning and demonstration phase. Our experi-

ments indicate a promising approach that enables a robot

to achieve functional manipulations of new objects within

an efficient time frame, significantly reducing the time re-

quired for adaptation.

1. Introduction

Robots deployed in human environments encounter the

challenge of navigating unpredictable scenes that often con-

tain highly dynamic and unfamiliar objects. For successful

integration into such settings, robotic systems must exhibit

the capability to interact functionally with newly introduced

objects, whether they are quasi-static (e.g. a new fridge) or

dynamic (e.g. a mug), without the need for extensive train-

ing periods. In this paper, we propose a novel pipeline

that not only empowers robots to achieve functional inter-

actions with objects but also enhances the overall assistance

provided to humans in their daily lives. Our approach in-

volves a few-shot object pose estimation pipeline, which

does not rely on any CAD models, followed by a human-

guided demonstration performed by either a caregiver, a

family member, or a remote operator. This human-guided

demonstration enables the robot to learn complex manipu-

lations, such as operating unfamiliar household appliances,

with minimal effort from the user with limited mobility.

Our primary focus is on the application of our approach to

the assistive wheelchair robot EDAN [14] equipped with a

robotic arm, as it operates in various household contexts

and encounters novel objects. Imagine a scenario where

a person with limited mobility or physical disabilities re-

lies on EDAN’s [14] assistance in their daily tasks. How-

ever, due to their physical limitations, they might not be

able to directly interact with the robot for teaching pur-

poses. Instead, another person or a remote operator can

take on the role of teaching EDAN [14] new objects and

manipulations through the proposed method. Afterwards,

the wheelchair user can instruct the robot to perform the

demonstrated manipulations when encountering the previ-

ously unknown objects in their daily life without requiring

the help of a caretaker. This makes the entire interaction

with the robot more inclusive, as it allows individuals with

varying physical abilities to leverage the robot’s functional-

ities effectively.

Our objective is the functional 6-DoF manipulation of

novel objects, enabling robots to learn object interaction in

a seamless and user-friendly way, enhancing their dexterity

and adaptability in real-world scenarios.

2. Related work

In recent years, object grasping methods have shown no-

table progress, enabling robots to pick up unknown objects

without extensive re-training [13, 12, 8]. However, a limita-

tion of these methods is their focus on grasping rather than

performing more complex and context-specific interactions

with objects.

On the other hand, functional manipulation methods

have been developed to teach robots intricate manipulations

and tasks beyond grasping [7, 5]. These methods, while
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Figure 1. Schematic visualization of our few-shot object poses estimation pipeline for functional object manipulation. A red coffee machine

is shown as an example target object. The reference template is shown with a green border. Its corresponding task trajectory is indicated

as a green line. The query image is shown with an orange border, the most similar template image with a blue dotted border. Keypoint

matches are indicated as lines between the images. The unknown transformation between query and most similar template image is shown

as a dotted arrow.

effective for specific object categories, often require signif-

icant training efforts for each new task and category, which

might hinder scalability and adaptability in dynamic envi-

ronments with novel objects. Florence et al. [4] proposed a

method that learns dense object descriptors from multi-view

reconstruction, enabling robots to grasp specific points on

novel objects after a relatively short training stage. While

promising, this approach still necessitates training and may

not fully address the challenge of seamless 6-DoF interac-

tion with completely unknown objects.

Our few-shot pose estimation backbone is inspired by

visual localization-based pipelines that include keypoint

matching on scenes [9] and objects [11]. By employing

a combination of generalized object segmentation and im-

age matching, the robot gains the versatility to interact with

objects in a context-sensitive manner. This approach al-

lows the robot to learn complex object-specific manipula-

tions from a small number of template images and a single

demonstration, offering potential benefits in terms of time

and ease of use.

3. Method

Our approach can be applied to wrist- or externally

mounted RGB-D cameras and comprises two main phases:

The scanning and demonstration phase and the inference

phase. To separate the object of interest from the back-

ground and clutter, both phases utilize generalized instance

segmentation techniques, specifically Grounding DINO [6]

and MobileSAM [15]. Grounding DINO [6] detects a

bounding box based on a textual descriptions of the target

object. The bounding box is then used as input to Mo-

bileSAM [15] which retrieves a segmentation of the ob-

ject. This segmentation is then used to crop a square region

around the object. As indicated by our ablation study, this

approach enhances the robustness of subsequent modules

by focusing on the object.

During the scanning and demonstration phase an in-

structor sequentially captures RGB-D template images from

different viewpoints using the described combination of

Grounding DINO [6] and MobileSAM [15]. Using the

mask provided by MobileSAM [15], keypoint matches

(LoFTR [10]) between each new template image and its

predecessor are determined. RANSAC [3] + Iterative Clos-

est Point (ICP) [2] are then used on the equivalent 3D-3D

matches of the point clouds to determine the relative camera

poses. An instructor then demonstrates the intended manip-

ulation of the object by guiding the robot arm through an

input device or zero-gravity mode, while the 6-DoF end-

effector trajectory is recorded. The last template captured

before teaching the trajectory is known as the reference tem-



plate view. Optionally, additional template views may be

captured that cover object viewpoints expected during in-

ference.

The inference phase can be split into three steps. As a

first step, when encountering a previously scanned object

from an unknown viewpoint, a crop of the object is received

using Grounding DINO [6] and MobileSAM [15] as be-

fore. The resulting crop is defined as the query image. The

query image is compared to all recorded templates using

NetVLAD [1] features to retrieve the k most similar tem-

plates. As a second step, keypoint matching (LoFTR [10])

is performed between the query image and the retrieved k

most similar images. As a last step, the viewpoint between

the query image and the template image with the most key-

point matches is estimated using RANSAC [3] + ICP [2]

as previously described. Given the relative transformations

between the template views calculated during the scanning

phase, the viewpoint change between the query and the ref-

erence template image in which a task was demonstrated is

computed. This enables the robot to repeat the trajectory

from a novel viewpoint.

A schematic visualization of our method can be found in

Figure 1.

4. Evaluation

Two initial experiments have been performed so far to

test our proposed approach. To gain more insight regarding

the effect of the object segmentation, we compare the task

execution success with and without masking the object us-

ing MobileSAM [15] and Grounding Dino [6](see Table 1).

4.1. Experimental Setup

Without masking, we extract the largest possible square

crop from the center of the camera image. On the other

hand, with masking, we crop a square region, equal to the

size of the mask, around the object. Subsequently, the

mask is utilized to filter the keypoint matches obtained from

LoFTR [10]. Query and template images either both have

masks or have no masks. In both cases, we only consider

one template image. Two setups are tested: Query and tem-

plate image have a) the same or b) a different background.

For each experiment, the results of the successful execu-

tion of a task are recorded for 7 different object rotations

and fixed camera positions. Given the positive effect of the

masks, in the following experiments, we always consider

the object mask.

A total of four different objects were employed in this

study, with each object used to teach the robot a specific

manipulation task. The robot’s execution of these tasks was

tested under various settings. For the assessment of our ap-

proach, we considered both quasi-static, larger objects, ex-

emplified by opening the drawer of a sideboard and flipping

a switch of a coffee machine, as well as dynamic, smaller

objects, demonstrated by pressing the switch of a multi-plug

and the enter button on a computer keyboard. A task exe-

cution was deemed successful when the desired goal was

achieved. We estimated the maximum translation error in

the trajectory to be below 0.5 cm for successful task com-

pletion.

While the current experiments were all performed on a

mock-up robotic platform, we plan to conduct additional

experiments on a mobile robotic platform. This includes

more complex manipulation tasks of dynamic and quasi-

static objects in a real household environment. Additionally,

we scheduled experiments for quantitative results on vision

benchmarks.

4.2. Results

The results of the ablation study in Table 1 underscore

the significance of masking an object-centric crop for suc-

cessful task execution. Notably, only one setup without

masking leads to successful execution, and here the query

and template images are essentially identical images with

the same background and a relative object rotation of 0
◦.

When the background differs between the query and tem-

plate images, the performance of LoFTR [10] in focusing on

the object deteriorates, even when the object is not rotated

relative to the template image. In contrast, the incorpora-

tion of a mask enables successful task execution at object

rotations of up to 45
◦.

Additionally, Table 2 reveals that a higher number of

template images increases the maximum object rotation an-

gle under which tasks can still be performed successfully.

With the utilization of five templates from different view-

points around the object, successful task execution can be

observed at up to 90
◦ object rotation. Conversely, when us-

ing only one template, the appearance difference between

the query image and the template image is too large at

higher rotations, leading to insufficient keypoint matches.

This limitation is successfully mitigated by utilizing multi-

ple template images and propagating the 6-DoF trajectory

transformations.

4.3. Discussion

Our preliminary experimental results indicate the practi-

cality of our approach. The required number of templates

depends mainly on the expected viewpoint variance at infer-

ence time. While the manipulation of quasi-static objects

such as a fridge only requires a single template, a smaller

object with less features and higher viewpoint variance at

inference time necessitates a higher number of templates

and corresponding masks. Due to our hierarchical match-

ing and the simple scanning and demonstration process, the

computational load as well as the demonstration time in-

crease only moderately with more templates. As a result,



BG Obj Mask -45o -30o -15o 0o 15o 30o 45o

Same

Coffee w/o ✓

Machine w ✓ ✓ ✓ ✓ ✓

Keyboard
w/o ✓

w ✓ ✓ ✓ ✓ ✓ ✓

Diff

Coffee w/o

Machine w ✓ ✓ ✓ ✓

Keyboard
w/o

w ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Manipulation success of our method under different object rota-

tions using one template view with (w) and without (w/o) object mask, on

same and different (diff) background (BG).

Obj #T -90o -60o -30o 0o 30o 60o 90o

Drawer
1 ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Coffee 1 ✓ ✓ ✓ ✓

Machine 5 ✓ ✓ ✓ ✓ ✓

Multi-Plug
1 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓

Keyboard
1 ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Manipulation success of our method under different

object rotations using different amount of template views (#T)

new object manipulations can usually be taught in less than

one minute.

4.3.1 Limitations and Future Work

One limitation of our approach is that it requires depth data

which can be missing on reflective or black surfaces. How-

ever, during the sparse matching process invalid depth pix-

els can be simply filtered out and partially valid depth maps

on objects are often sufficient for accurate, relative pose

estimation. Another limitation is that we have not yet in-

tegrated a motion planner that takes into account the par-

tially scanned object and the static or dynamic environment.

Therefore, transformed end-effector trajectories can lead to

collisions especially if object poses change drastically. In

future, we also want to train object-centric feature match-

ers that promise better performance than keypoint matching

trained on scenes.

5. Conclusion

Our experiments performed so far show a promising

path to teach robotic systems the functional manipulation of

newly encountered objects in short time intervals. Specif-

ically, we showed the successful execution of common

household tasks from a single demonstration at novel view-

points of up to 90
◦ rotation. A key insight of our work

is the significance of recently introduced generalized ob-

ject segmentation methods that strongly increase the ob-

ject viewpoint matching robustness in our robotic experi-

ments. While those initial experiments on four diverse ob-

jects show promising qualitative results, more quantitative

experiments of our few-shot pose estimation-based method

are still required. Furthermore, we are planning to test our

pipeline on the EDAN [14] robot in real-world assistive sce-

narios.
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